Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMC Med Genomics ; 14(Suppl 6): 289, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1571758

ABSTRACT

BACKGROUND: Virus screening and viral genome reconstruction are urgent and crucial for the rapid identification of viral pathogens, i.e., tracing the source and understanding the pathogenesis when a viral outbreak occurs. Next-generation sequencing (NGS) provides an efficient and unbiased way to identify viral pathogens in host-associated and environmental samples without prior knowledge. Despite the availability of software, data analysis still requires human operations. A mature pipeline is urgently needed when thousands of viral pathogen and viral genome reconstruction samples need to be rapidly identified. RESULTS: In this paper, we present a rapid and accurate workflow to screen metagenomics sequencing data for viral pathogens and other compositions, as well as enable a reference-based assembler to reconstruct viral genomes. Moreover, we tested our workflow on several metagenomics datasets, including a SARS-CoV-2 patient sample with NGS data, pangolins tissues with NGS data, Middle East Respiratory Syndrome (MERS)-infected cells with NGS data, etc. Our workflow demonstrated high accuracy and efficiency when identifying target viruses from large scale NGS metagenomics data. Our workflow was flexible when working with a broad range of NGS datasets from small (kb) to large (100 Gb). This took from a few minutes to a few hours to complete each task. At the same time, our workflow automatically generates reports that incorporate visualized feedback (e.g., metagenomics data quality statistics, host and viral sequence compositions, details about each of the identified viral pathogens and their coverages, and reassembled viral pathogen sequences based on their closest references). CONCLUSIONS: Overall, our system enabled the rapid screening and identification of viral pathogens from metagenomics data, providing an important piece to support viral pathogen research during a pandemic. The visualized report contains information from raw sequence quality to a reconstructed viral sequence, which allows non-professional people to screen their samples for viruses by themselves (Additional file 1).


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Computational Biology/methods , Genome, Viral , Genomics , Metagenomics , SARS-CoV-2/genetics , Algorithms , Animals , Automation , Coronavirus Infections/genetics , High-Throughput Nucleotide Sequencing , Humans , Mass Screening/methods , Pandemics , Pangolins , Reference Values , Software , Transcriptome , Workflow
2.
Comput Biol Chem ; 96: 107613, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1549716

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is an ongoing global health emergency that has caused tremendous stress and loss of life worldwide. The viral spike glycoprotein is a critical molecule mediating transmission of SARS-CoV-2 by interacting with human ACE2. However, through the course of the pandemics, there has not been a thorough analysis of the spike protein mutations, and on how these mutants influence the transmission of SARS-CoV-2. Besides, cases of SARS-CoV-2 infection among pets and wild animals have been reported, so the susceptibility of these animals requires great attention to investigate, as they may also link to the renewed question of a possible intermediate host for SARS-CoV-2 before it was transmitted to humans. With over 226,000 SARS-CoV-2 sequences obtained, we found 1573 missense mutations in the spike gene, and 226 of them were within the receptor-binding domain (RBD) region that directly interacts with human ACE2. Modeling the interactions between SARS-CoV-2 spike mutants and ACE2 molecules showed that most of the 74 missense mutations in the RBD region of the interaction interface had little impact on spike binding to ACE2, whereas several within the spike RBD increased the binding affinity toward human ACE2 thus making the virus likely more contagious. On the other hand, modeling the interactions between animal ACE2 molecules and SARS-CoV-2 spike revealed that many pets and wild animals' ACE2 had a variable binding ability. Particularly, ACE2 of bamboo rat had stronger binding to SARS-CoV-2 spike protein, whereas that of mole, vole, Mus pahari, palm civet, and pangolin had a weaker binding compared to human ACE2. Our results provide structural insights into the impact on interactions of the SARS-CoV-2 spike mutants to human ACE2, and shed light on SARS-CoV-2 transmission in pets and wild animals, and possible clues to the intermediate host(s) for SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19/veterinary , COVID-19/virology , Mutation, Missense , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Animals, Wild/genetics , Animals, Wild/virology , COVID-19/transmission , Computational Biology , Host Microbial Interactions/genetics , Host Specificity/genetics , Humans , Molecular Dynamics Simulation , Pandemics/veterinary , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Pets/genetics , Pets/virology , Protein Interaction Domains and Motifs/genetics , Risk Factors
3.
Front Immunol ; 12: 656433, 2021.
Article in English | MEDLINE | ID: covidwho-1268249

ABSTRACT

Background: The pathogenesis of COVID-19 emerges as complex, with multiple factors leading to injury of different organs. Some of the studies on aspects of SARS-CoV-2 cell entry and innate immunity have produced seemingly contradictory claims. In this situation, a comprehensive comparative analysis of a large number of related datasets from several studies could bring more clarity, which is imperative for therapy development. Methods: We therefore performed a comprehensive comparative study, analyzing RNA-Seq data of infections with SARS-CoV-2, SARS-CoV and MERS-CoV, including data from different types of cells as well as COVID-19 patients. Using these data, we investigated viral entry routes and innate immune responses. Results and Conclusion: First, our analyses support the existence of cell entry mechanisms for SARS and SARS-CoV-2 other than the ACE2 route with evidence of inefficient infection of cells without expression of ACE2; expression of TMPRSS2/TPMRSS4 is unnecessary for efficient SARS-CoV-2 infection with evidence of efficient infection of A549 cells transduced with a vector expressing human ACE2. Second, we find that innate immune responses in terms of interferons and interferon simulated genes are strong in relevant cells, for example Calu3 cells, but vary markedly with cell type, virus dose, and virus type.


Subject(s)
COVID-19/virology , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/genetics , RNA, Viral , RNA-Seq , SARS-CoV-2/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , COVID-19/immunology , Cell Line , Cells, Cultured , Coronavirus Infections/immunology , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Middle East Respiratory Syndrome Coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Virus Internalization
4.
J Gen Virol ; 101(9): 921-924, 2020 09.
Article in English | MEDLINE | ID: covidwho-598900

ABSTRACT

We constructed complex models of SARS-CoV-2 spike protein binding to pangolin or human ACE2, the receptor for virus transmission, and estimated the binding free energy changes using molecular dynamics simulation. SARS-CoV-2 can bind to both pangolin and human ACE2, but has a significantly lower binding affinity for pangolin ACE2 due to the increased binding free energy (9.5 kcal mol-1). Human ACE2 is among the most polymorphous genes, for which we identified 317 missense single-nucleotide variations (SNVs) from the dbSNP database. Three SNVs, E329G (rs143936283), M82I (rs267606406) and K26R (rs4646116), had a significant reduction in binding free energy, which indicated higher binding affinity than wild-type ACE2 and greater susceptibility to SARS-CoV-2 infection for people with them. Three other SNVs, D355N (rs961360700), E37K (rs146676783) and I21T (rs1244687367), had a significant increase in binding free energy, which indicated lower binding affinity and reduced susceptibility to SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections/metabolism , Eutheria/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Disease Susceptibility , Eutheria/genetics , Genetic Variation , Humans , Mutation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Polymorphism, Genetic , Polyproteins , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL